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The Interpretation of Diffuse X-ray Reflexions from Sinp, le Crystals. II 
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(Received 5 December 1952) 

An earlier paper by the same authors dealt with geometrical aspects of the photographic study of 
diffuse X-ray reflexions from single crystals. The present paper deals with factors affecting the 
intensity of these reflexions. The method of making the observations varies according to whether 
the diffusely-scattering reciprocal region has the form of a cloud, a disc, a rod or a point, and the 
appropriate method for each is indicated. Divergence corrections are described which make 
allowance for the fact that the beam is not infinitely narrow and the crystal is not ideally perfect. 
The final intensity correction applies to reflexions which occur off the equator of the photograph. 

X-ray diffuse reflexions may be referred to extensions 
of the reciprocal-lattice points caused by the lack of 
a truly periodic arrangement of the atoms in the 
crystal. In a previous paper (I) (Hoerni & Wooster, 
1952), a method of relating any given point within 
the diffuse spot on a photograph to the corresponding 
point in reciprocal space has been described. The 
present paper deals with some aspects of intensity 
measurements of the diffuse reflexions. In particular, 
we shall discuss the influence of the distribution of the 
extra scattering density in reciprocal space on in- 
tensity measurements and the correction affecting the 
non-equatorial diffuse reflexions recorded with a 
cylindrical camera. 

1. Intens i ty  m e a s u r e m e n t s  which  are necessary  
for the s tudy  of reciprocal  c louds,  discs ,  sp ikes  

and points  

The diffuse scattering densities in reciprocal space 
may have four essentially .different shapes, namely: 
(i) broad three-dimensional extensions or clouds; 
(ii) discs; (iii) spikes (rods); (iv) points. 

These discs, spikes and points cannot be considered 
as infinitely narrow or sharp, owing to the finite size 
of the crystal. In order to write suitable expressions 
for their scattering power, we shall assume that  the 
crystal is a parallelepiped with edges hTlal, N2a 2 and 
AT3a3, where the ai's stand for the unit-cell vectors, 
and the N's are large numbers. For convenience in 
calculations, the a /s  will be supposed to be orthogonal, 
but our results will also apply to non-orthogonal cases. 
If absorption in the crystal is neglected, the diffuse 
intensity for the four types of scattering densities can 
be written as follows: 

(i) I(b) = (Ie/rg)N1N2N~gl2~(b), (1) 
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(fi) I(b) = (IJr2)N2NaG(bl)g2a(b~, ba) 

for a disc normal to a 1 , (2) 

(fii) I(b) = (Ie/r2)NiG(b2)G(bz)gi(bl) 
for a spike parallel to a i , (3) 

(iv) I(b) = (Ie/r~')G(bl)G(b~)G(bz)g. (4) 

In the above expressions 

b = (b 1, b 2, b3), denotes the reciprocal point corre- 
sponding to the direction of observation; 

Ie = Io(e~/mcg) 2. ½(1 +cos ~ 20), represents the inten- 
sity scattered by a free electron at unit distance 
from the crystal, when irradiated with un- 
polarized radiation of intensity I0, the angle 
of scattering being 20; 

r = distance from the crystal at which the diffuse 
intensity is measured; 

g is a constant (depending on the atomic arrange- 
ment); 

gl, g2a, gl~a are functions which vary slowly with b; 
G(bi) = (sin S :~Niaib)/(sin ~ :mib) and has a maxi- 

mum value AT~ when aib takes integral values 
and falls to zero when aib is increased by the 
small amount 1/N~. 

The function G(bi) varies so rapidly that  the fol- 
lowing factors entirely mask its variation: (a) the 
incident beam is not strictly parallel; (b) the solid 
angle subtended by the crystal, at the distance where 
the diffuse intensity is observed, is not vanishingly 
small; (c) the recording instruments, namely the micro- 
photometer or the Geiger counter, do not cover a 
vanishingly small section of the diffuse beam. Conse- 
quently, the intensity i(b),  say, measured by means 
of a photographic film or a Geiger counter, may be 
different from the theoretical expressions (1)-(4). Any 
measurement i ( b  °) relating to a reciprocal point b ° 
records the contributions of the reciprocal points con- 
rained in the 'divergence domain' A(b°), the dimen- 
sions of which are small relative to those of the re- 
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ciprocal unit cell, but large compared with the dis- 
tances over which the functions G(bi) dLffer from zero. 
Every point within A (b °) does not contribute equally 
to the recorded intensity i(b°). Its contribution is 
weighted by the divergence function h(b-b°) ,  which 
vanishes outside A (b °) and within A (b °) depends on 
the experimental conditions. The observed intensity 
i is therefore related to the true intensity I by the 
formula 

i ( b  °) -- I I ( b ) h ( b -  b°)dvb, (5) 

where h is normalized by writing 

I h(b-b°)dVb = 1 B 

We shall now study the divergence effects for the 
four types of scattering densities by substituting in 
turn (1), (2), (3}' and (4) in (5). 

Case (i) 
Assuming ttiat the variation of g123(b) o v e r  A(b °) 

is n~g{igi0Ib, we obtain 

Ie 
l(b°) = ~ N1N2N39123(b°) I h (b -b° )  dvb 

= ~2N1N2Nagl~3(b °) = I (b  °) . (6) 

Thus, intensity measurements are not affected in 
this case by the divergence function h, and I is pro- 
portional to the function g123. 

Case (ii) 
To a first approximation,  the divergence function h 

can be expressed as the~product of three one-variable 
functions hi, h2, ha, each normalised in the same way 
as h, namely, 

h ( b - b  °) = h~(b~-bO)h~(b2-b°)ha(ba-b°) .  (7) 

Substitution of (2) and (7) in  (5) gives, then, 

i(bO ) Ie = -~ N~N3 1 G(b~)h~(b~-b°)db~ 

× I I g23(b2' ba)h~(b2-b° )ha(ba-b° )db f lb3  

= Ie N2N3G(b°)g23(b °, b °) (8) 
r a 

N 

since g23 varies slowly. The function G(b °) is given by 
the equation 

G(b°) = I G ( b l ) h l ( b l - b ° ) d b l '  

and it is very different from G(bl) , as may be seen 
in Fig. 1, where the 'function " h, G and G are shown. 
A streak, corresponding to the intersection of the 
Ewald sphere, l ,  (Fig. 2) by a disc, may be observed, 
but  none of the observed intensities I is related in a 

simple way to the true intensity I.  However, we shall 
show that  the quantity which it is most useful to 

measure is Iz = I idl ,  namely, the observed intensity 

integrated along a straight line crossing the streak 

b o 

~ (b )  

. J  _ _  

b- 
Fig. 1. Diagram showing the divergence function h ( b - - b  o) 

(for a reflexion about a mean position b°), a function G(b) 
giving the true variation of diffraction about  a position b, 
and G(b) giving the observed variation of diffraction about  
the same position. (The curve for h (b - -b  o) has been ar- 
bitrarily placed along the axis of abscissae.) 

z 

Fig. 2. Diagram showing the intersection of a reciprocal disc 
with the Ewald sphere, and the projection of the surface 
of intersection on to the photographic film. 

orthogonally. I t  is easy to see (Fig. 2) that  dl, the 
breadth of the photographic streak, corresponds to a 
reciprocal distance d$ = dl/r~, on the surface of the 
Ewald sphere (of radius 1/;t). Furthermore, if the 
normal to the disc makes an angle (½g-v) with the 
radius of the sphere, d$ = dbl/cos v, or dl = (r)~/cos v)db 1. 

Applying this to equation (8) we obtain 

l idl I flr 1 I = - -  a ( b l ) d b l .  (9 )  c o s  2 V ~ N s g 2 3 ( b ~ , b ~  ) - o 0 

But 

l l(i 

a l  

that  is to say the areas under curves G and G in Fig. 1 
have the same value, namely, N1/a 1. Equation (9) 
then becomes, dropping the superscript 0, 



J .  H O E R N I  AND W. A. W O O S T E R  545 

I idl I f l  1 N1NzNz 1 
r cos~ ~ g2a (b2, ba) • (10) 

Thus, the integral across the streak is proportional to 
the function g2a for the density of the disc multiplied 
by the factor I/cos v. This can also be seen in a simple 
geometrical manner from Fig. 2, where the integration 
of blackening along dl can be seen to give a represen- 
tat ive measure of the total  scattering power across the 
disc. 

Case (ifi) 

Calculations similar to those used in studying case 
(ii) can be made here. A sharp spot corresponding to 
the intersection with the Ewald sphere of the spike is 
observed, and the relevant experimental quant i ty  is 

now l idS, namely, the observed intensity integrated 

over the whole spot. To an area dS on the film there 
corresponds on the reflecting sphere an area da = 
dS/r~A ~" (Fig. 3) and if the angle between the spike 

Fig. 3. Diagram showing the intersection of a reciprocal spike 
with the Ewald sphere and the projection of the surface 
of intersection on to the photographic film. 

and the radius of the sphere is ~,, da = db~db3/cos ~,. 
The integral I r_dS becomes, using (3), (5) and (7), 

l i d s  = i f l  ~ 1 Nlg~(bl) i I 0(bs)0(ba)db~dba 
COS ~ 

= i e ~ 9  " 1 NzN2N3 1 (11) 
cos v a2a3 gl(bl) " 

The integral over the spot is therefore proportional to 
the function gt for the density of the spike multiplied 
by  the factor 1/cos v. I t  may  also be seen from Fig. 3 
tha t  the intensity integrated over the whole spot on 
the film gives a measure of the density of the reciprocal 
spike ~cross a particular section. 

Case (iv) 

The diffraction from reciprocal points includes, in 
particular, the usual Bragg reflexion which corre- 
sponds to the passage through the Ewald sphere of the 
reciprocal lattice points themselves. The relevant ex- 
perimental quant i ty  is here the ' integrated reflexion' 

Eo~/I o, where E is the to ta l  energy diffracted when the 
point is rotated with an angular velocity w across the 
Ewald sphere. Using the notation of this paper, the 
integrated reflexion is expressed by 

Ea) I f l  a 1 l 
I 0 I 0 ~ cos ~ NzN2Na ~ g'  (12) 

where ~/2 is the rotation radius of the point. For a 
point lying in the equatorial plane of a cylindrical 
camera ~ = 2 sin 0 and ~ = 0 so tha t  (12.),takes ~the 
more familiar form 

E o ~ I f l a l ( 1 )  2 
I 0 I 0 s in20 ~ gV,  (13) 

where V is the volume of the crystal and g, for the 
particular case of a :Bragg reflexion, is equal to the 
square of the structure amplitude. 

The factor 1/~ cos v in (12)--or 1/sin 20 in ( 1 3 ) -  
is the Lorentz factor. I t  will be seen tha t  the factors 
1/cos v in (10), (11) and (12) arise from the same cause, 
namely, the inclination of the disc or of ,the spike 
relative to the Ewald sphere. For this reason, it is 
suggested tha t  I/cos ~ should be called the 'Lorentz 
factor for diffuse reflexions'. 

2. Divergence corrections 
The above formulae (6), (10) and (11) are strictly 
valid only on the assumption tha t  the variations of the 
function g(b)--where g(b) is any one of the functions 
9t(bl), 923(b2b3), 9123(bz, b 2, ba)--over the divergence 
domain A(b) can be neglected. This is often the case 
in actual experiments, especially when the diffuse 
reflexions are recorded photographically since the 
divergence effect (c) is then smaller than in the case of 
a Geiger counter. Divergence corrections do not arise 
for Bragg reflexions, since g in  (4) is a constant. On 
the other hand, when 

g(b°) = I g(b ) h (b -  b°) dvb 

happens to be different from g(b °) the explicit form of 
h has to be determined experimentally. Then the pas- 
sage from the observed function ~(b) to the ,true func- 
tion g(b) can be made as follows: 

A new integral 

= l ~(b) h(b - b ° ) dvb ~(b o) 

is calculated from the observed values ~(b) corre- 
sponding to the' various points within A. Since the 
divergence correction is usually small, it can be as- 
sumed that the effect of h on g and ~ is the same, or 
in other words that the following relation holds, 
namely, 

~(b °) ~(b °) 

y(b °) g(b°) ' 

from which the true value g(b °) can be obtained. 

A C 6  35 
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Practical applications of the above method of 
calculating divergence corrections can be found in 
studies of diffuse reflexions by  Olmer (1948), Rama- 
chandran (1949) and Hoerni (1952). 

3. T h e  inc l ina t ion  factor  for n o n - e q u a t o r i a l  spo t s  

We now come to further factors affecting intensity 
measurements in the case of non-equatorial diffuse 
spots recorded with a cylindric camera. These factors 
are due to: (A) the increased quant i ty  of photographic 
emulsion bathed in a given X-ray beam at oblique 
incidence; (B) the increased absorption of X-rays in 
the film at  oblique incidence; (C) the increased distance 
between the crystal and the point where X-rays are 
recorded. 

According to the considerations of § 1, we must  
investigate the effect of factors A, B and  C in the case 
of the different spots arising from the four types 
(i)-(iv) of scattering densities in reciprocal space. We 
have already found tha t  the relevant experimental 
quantities are: (1) the intensity I at a given point 

diffuse spot; (2) the line integral I t = .~ Idl  
f m  

within the 

along a given normal section of a spike; (3) the surface 

flux J = f I d S  over a sharp spot. We have integral o r  

therefore to consider the effect of factors A, B and C 
on each of the quantities (1), (2) and (3). 

Factor A 
For convenience, we shall deal with a beam of 

constant intensity I and of cross-section S. If the beam 
is allowed, in the first instance, to fall normally on 
the film, the value I is deduced from microphotometer 
measurements, while the flux is equal to J = IS .  
Clearly, the flux is proportional to the quant i ty  of 
photographic emulsion bathed in the beam so tha t  this 
quant i ty  is multiplied by the factor sec % when the 
beam is allowed to fall on the film at  an angle Z with 
the normal to the film. While the new flux J '  is thus 
equal to J sec Z, the measurements for I are not 
affected since I '  = J ' / S  sec Z = J sec z / S  sec Z = I.  
As regards the line integral It, the effect of factor A 
depends on the angle (measured on the film) between 
the direction of integration and the equatorial direc- 

tion. We have I'z = .  I I ' d l ' =  I ldl ' ,  since I = I ' ,  so 

tha t  the relation between 1~ and Iz depends on the way 
in which the length element d~ is m0dilied by r0t~fing 
the film by  an angle % about the equatorial direction. 
Clearly, dl is not affected when the direction of integra- 
tion is parallel to the equatorial direction (i.e. in the 

case of a spike normal to the equatorial direction) 
whereas dl' = dl sec Z when the direction of integra- 
tion is vertical (i.e. in the case of a spike, parallel to 
the equatorial line). For a general direction, it may  be 
shown tha t  dl' = d l (1 - s in  ~ Z" sin~ a)-½, where ~ is the 
angle between the direction of integration and the 
equatorial direction. 

Factor B 
This factor is related to the increased absorption of 

X-rays at  oblique incidence. I t  affects only the factor 
I in I t and J ,  and is therefore the same for the 
quantities (1), (2) and (3). The ratio between the 
intensity at  normal incidence I and the intensity at  
oblique incidence I '  has been found by Cox & Shaw 
(1930) to be equal to 

I / I '  = 

[l+exp [-~t](1-V)]/[l+exp [-~t sec z](1-O sec z)], 
where t and f l  are the thickness and the absorption 
coefficient of the celluloid backing of the film, and C 
is the loss of intensity from the beam in the front layer 
of emulsion at normal incidence. These authors also 
give the experimental way of determining the constants 
(#t) and C. 

According to (6), (9) and (10), I and Ii are propor- 
tional to 1/r 2 and 1/r respectively, whereas J does not 
depend on the distance r from the crystal. Hence, if 
the camera radius is taken as the s tandard distance 

d 

2-0. 

1"8 

1"6 

~ 1"4 
._g 1 "2 

-~ 1"0 
~ . 

0"8. 

0"6' 

(b) 

0"2 0"4 0"6 0"8 

~" =sin X 

Fig. 4. Graph  showing the  var ia t ion  of the  inclination factor 
with  ~ for the  in tens i ty  a t  a poin t  on the  f i lm (curve (a)), 
and  for the  in tegra ted  intenfiity over  an  a rea  (curve (b)). 

E x p e r i m e n t a l  q u a n t i t y  

I 

Iz = I Idl 

J = I IdS 

Table 1. Inclination factor for non-equatorial spots 
Fac to r  A Fac to r  B Fac to r  C 

( l _ s i n  z % sin s a)½ l + e x p  [-- ;ut](1--C) see Z 
1 Jr exp [ - - # t  see Z](1 -- C see Z) 

cos X 1 
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of observation, the values of I, I z and J found for 
non-equatorial diffuse spots must be multiplied by 
sec" Z, sec Z and 1 respectively. 

Table 1 summarizes the values found for the partial 
inclination factors by which the observed quantities 
I ' ,  I~ and J '  are to be multiplied. The total inclination 
factor is obtained by multiplying the three factors 
along the appropriate horizontal line. 

The total factor for J is similar to the 'film-absorp- 
tion factor' found by Cox & Shaw (1930) in their study 
of integrated reflexion. I t  is plotted in Fig. 4 (curve (b)) 
as a function of $ = sin Z, using Cox & Shaw's ex- 
perimental values for C and (/~t). In the same figure, 

the corresponding inclination factor for I has also been 
plotted (curve (a)). 

One of us (J. H.) wishes gratefully to acknowledge the 
award of a scholarship by the Swiss Commission for 
Post Doctoral Studies in Mathematics and Physics. 
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The molecule B4C14 consists of a nearly regular tetrahedron of boron atoms surrounded by a larger, 
nearly regular tetrahedron of chlorine atoms with B-C1 single bonds (1-70 A) directed away from 
the center of the tetrahedra. The molecular symmetry is D~d-42m, but differs only slightly from 
Td-43m, and the average B-B distance is 1.70 A. Molecular centers are at 0, 0, ½ and ½, ½, 0 in the 

D4h-P42/nmc, with a = b = 8.09 A and c = 5-45 A. space group 15 

The unusual compound, B4C14, has recently been 
discovered by Urry, Wartik & Schlesinger (1952), 
who have kindly supplied us with a sample for mole- 
cular structure determination by the X-ray diffraction 
method. This study is part of a general program of 
structure determinations of electron deficient com- 
pounds of boron. 

The sample was distilled carefully into thin-walled 
pyrex capillaries in a vacuum line previously flushed 
with BF z in order to remove reactive compounds 
adsorbed on the glass surfaces. The samples in these 
capillaries were stored about two weeks at about 
35 ° C. with a small temperature gradient in the capil- 
lary in order to grow a single crystal about 0.3 by 0.5 
by 1.2 mm. The symmetry of the tetragonal reciprocal 
lattice is D,h-4/mmm. The unit-cell dimensions of 

a = b = 8.09±0.02 and c = 5.45±0.01 /~ 

lead to a unit cell volume of 356 A ~. Assuming the 
usual values for van der Waals radii this unit cell must 
contain two molecules of B4C14, and the crystal there- 
fore has the reasonable calculated density of 1.724 
g.cm. -3. Because of the reactivity of the compound 
no independently measured value is known. 

Buerger precession photographs of the {Ok/}, {hhl}, 
{h,2h,1} and {h,3h,1} zones, and Weissenberg photo- 
graphs of the {hk0} zone were taken with Mo K s  

radiation. Intensities were estimated visually with the 
aid of standard scales prepared by timed exposures of 
a reflection from the crystal, and timed exposures of 
the various zones or multiple-film techniques were 
employed as additional aids. The revised Lorentz 
factor (Waser, 1951) was used in the reduction of the 
intensities of the precession photographs. Systematic 
extinctions of hhl when 1 is odd and of hk0 when h + k  
is odd lead uniquely to the space group ;D1~-p42/nmc. 
The presence of only two molecules in this space group 
requires the molecular symmetry to be D2~-42m. 

Both packing considerations and the presence of 
fairly strong reflections which would be approximately 
extinguished by choice of positions 8(e) or 8(f) lead 
to the positions 8(g) (Internationale Tabellen, 1935, 
p. 222) for the chlorine atoms. The x and z parameters 
in these positions, 

0, x, z; z, 0, ~; ½, ½+x, ½-z; ½+x, ½, ½+z; 
o, x, z; x, 0, ~; ½, ½-x, ½-z; ½-x, ½, ½+z, 

were estimated by trial-and-error methods with the 
aid of charts described by Bragg & Lipson (1936). 
The electron-density projections along [001] and [100] 
were then synthesized with the use of signs evaluated 
from the chlorine contributions only. Although no 
assumption had been made of the boron positions, 
these atoms appeared on the electron-density maps in 

85" 


